ディスカウント・キャッシュ・フロー(DCF)評価手法では、株式の価値は、キャッシュ・フローの何らかの尺度の現在価値に基づいて見積もられます。配当金は、投資家に直接送られるキャッシュフローであることは明らかであるため、キャッシュフローの最もクリーンでわかりやすい尺度です。
本質的株式価値(バリュエーション・サマリー)
年 | 価値 | DPSt または終了値 (TVt) | 計算 | 現在価値 16.05% |
---|---|---|---|---|
0 | DPS01 | 3.50 | ||
1 | DPS1 | 3.82 | = 3.50 × (1 + 9.12%) | 3.29 |
2 | DPS2 | 4.19 | = 3.82 × (1 + 9.76%) | 3.11 |
3 | DPS3 | 4.63 | = 4.19 × (1 + 10.40%) | 2.96 |
4 | DPS4 | 5.14 | = 4.63 × (1 + 11.04%) | 2.83 |
5 | DPS5 | 5.74 | = 5.14 × (1 + 11.68%) | 2.73 |
5 | ターミナル値 (TV5) | 146.34 | = 5.74 × (1 + 11.68%) ÷ (16.05% – 11.68%) | 69.51 |
フィリップス66普通株式の本質的価値(1株当たり) | $84.43 | |||
現在の株価 | $89.25 |
レポートに基づく: 10-K (報告日: 2019-12-31).
1 DPS0 = 普通株式の1株当たり前年度配当金の合計 Phillips 66 。 詳しく見る »
免責事項!
バリュエーションは標準的な仮定に基づいています。株価に関連する特定の要因が存在する可能性があり、ここでは省略します。このような場合、実際の在庫価値は推定値と大きく異なる可能性があります。推定固有株式価値を投資の意思決定プロセスに使用したい場合は、自己責任で行ってください。
必要な収益率 (r)
仮定 | ||
LT国債総合の収益率1 | RF | 4.42% |
市場ポートフォリオの期待収益率2 | E(RM) | 15.02% |
普通株式 Phillips 66 システマティックリスク | βPSX | 1.10 |
フィリップス66普通株式の所要収益率3 | rPSX | 16.05% |
1 10年以内に期限が到来しない、または償還不能となるすべての発行済み固定利回り米国債の入札利回りの加重平均(リスクフリー・リターン・プロキシ)。
2 詳しく見る »
3 rPSX = RF + βPSX [E(RM) – RF]
= 4.42% + 1.10 [15.02% – 4.42%]
= 16.05%
配当成長率 (g)
レポートに基づく: 10-K (報告日: 2019-12-31), 10-K (報告日: 2018-12-31), 10-K (報告日: 2017-12-31), 10-K (報告日: 2016-12-31), 10-K (報告日: 2015-12-31).
2019 計算
1 リテンション率 = (フィリップスに帰属する当期純利益 66 – 普通株式に対する配当金) ÷ フィリップスに帰属する当期純利益 66
= (3,076 – 1,570) ÷ 3,076
= 0.49
2 利益率 = 100 × フィリップスに帰属する当期純利益 66 ÷ 売上高およびその他の営業収益
= 100 × 3,076 ÷ 107,293
= 2.87%
3 資産の回転率 = 売上高およびその他の営業収益 ÷ 総資産
= 107,293 ÷ 58,720
= 1.83
4 財務レバレッジ比率 = 総資産 ÷ 株主資本
= 58,720 ÷ 24,910
= 2.36
5 g = リテンション率 × 利益率 × 資産の回転率 × 財務レバレッジ比率
= 0.57 × 3.80% × 1.89 × 2.23
= 9.12%
配当成長率(g)は、ゴードン成長モデルが示唆するものです。
g = 100 × (P0 × r – D0) ÷ (P0 + D0)
= 100 × ($89.25 × 16.05% – $3.50) ÷ ($89.25 + $3.50)
= 11.68%
どこ:
P0 = Phillips 66普通株式の現在の価格
D0 = 前年度の普通株式1株当たり配当金の合計Phillips 66
r = フィリップス66普通株式の所要収益率
年 | 価値 | gt |
---|---|---|
1 | g1 | 9.12% |
2 | g2 | 9.76% |
3 | g3 | 10.40% |
4 | g4 | 11.04% |
5以降 | g5 | 11.68% |
どこ:
g1 PRATモデルによって暗黙的に示されます
g5 ゴードン成長モデルによって暗示されます
g2, g3 そして g4 間の線形補間を使用して計算されます。 g1 そして g5
計算
g2 = g1 + (g5 – g1) × (2 – 1) ÷ (5 – 1)
= 9.12% + (11.68% – 9.12%) × (2 – 1) ÷ (5 – 1)
= 9.76%
g3 = g1 + (g5 – g1) × (3 – 1) ÷ (5 – 1)
= 9.12% + (11.68% – 9.12%) × (3 – 1) ÷ (5 – 1)
= 10.40%
g4 = g1 + (g5 – g1) × (4 – 1) ÷ (5 – 1)
= 9.12% + (11.68% – 9.12%) × (4 – 1) ÷ (5 – 1)
= 11.04%